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ABSTRACT

Music tone quality evaluation is generally performed by ex-
perts. It could be subjective and short of consistency and fair-
ness as well as time-consuming. In this paper we present a
new method for identifying the clarinet reed quality by evalu-
ating tone quality based on the harmonic structure and energy
distribution. We first decouple the quality of reed and clar-
inet pipe based on the acoustic harmonics, and discover that
the reed quality is strongly relevant to the even parts of the
harmonics. Then we construct a features set consisting of the
even harmonic envelope and the energy distribution of har-
monics in spectrum. The annotated clarinet audio data are
recorded from 3 levels of performers and the tone quality is
classified by machine learning. The results show that our new
method for identifying low and medium high tones signifi-
cantly outperforms previous methods.

Index Terms— tone quality evaluation, acoustic model,
harmonic features, machine learning, clarinet tone quality

1. INTRODUCTION

Persistent practice for many years in controlling breath, fin-
gers, tongue and lips is required to approach the desired
tone quality for students to perform a woodwind instrument.
Since beginners are often unable to evaluate the tone qual-
ity they played, guidance of experts is imperative during
practicing. However, the evaluation simply based on the sub-
jective judgement of teachers could be inconsistent as well
as time-consuming. Automatic tone quality evaluation of
instrumental music has both theoretical and practical values
and the techniques of acoustic identification and evaluation
can play important roles in speech recognition [1], speaker
verification [2] and music identification [3], etc., as well as
music student audition and instrument manufacturing.

Many efforts are made to study the quality of music in-
struments. The efforts were made on influence of physical
components [4], and instrument controlling skills in rendi-
tion [5, 6] and tone colors in music context [7, 8]. The stud-
ies on the evaluation of saxophone timbre were considered
as lack of systematic understanding of how the features con-

tribute to tone quality [9–11]. In [12], Chavez et al. showed
that the clarinet tone quality is distinguishable visually via
spectrogram, and in [13] the image representation by a popu-
lar convolutional neural network (CNN) structure, AlexNet, is
analyzed with an average accuracy of 76.56%. Yet, few have
analyzed the tone quality with respect to different quality of
reeds and found an effective representation of tone quality.

Differentiating the quality of reed and that of pipe is very
important for selecting reed and improving pipe quality of
clarinet and other woodwind instruments with reed. In this
paper, we present a new method for identifying the clarinet
reed quality by evaluating tone quality. By analyzing the
clarinet acoustic model and the clarinet audio signal we dis-
cover that the tone quality could be decoupled to that of reed
and pipe in terms of harmonics. As pipe mainly produce the
odd harmonics, the clarinet reed quality depends largely on
the even parts of the harmonic series. The harmonic energy
distribution in spectrum is highly related to tone quality and
harmonic-to-noise ratios in different spectrum ranges is uti-
lized as a part of tone representation. Thus, the tone quality
representation is based on two key parts: the harmonic struc-
ture and harmonic energy distribution.

The annotated clarinet audio data are recorded from 3 lev-
els of performers and a support vector machine (SVM) based
classifier is developed. The effectiveness of the representation
proposed in the paper is demonstrated by the performance
data with two classification strategies: single-note strategy
and multi-notes strategy. The results show that our method
significantly outperforms previous methods.

2. RELATION TO PRIOR WORK

Our efforts focus on the representation of clarinet tone and
its quality evaluation related to instrument physics, acoustic
signal analysis and music theory. Most related work carried
out by previous researchers focused on the classification tech-
niques, such as random forest in multi-class classification [11]
and the structures of CNN [13]. A few efforts were made on
the feature representation of instrumental tone quality. Hsiao
et al. [9] analyzed the waveform-shape-based features of sax-
ophone, whereas systematical investigation is not conducted
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on the belief that tone quality relies on the richness of har-
monics in frequency domain. Guo et al. [10] constructed a
one-dimension feature from energy distribution but without
clarifying the relation to timbre. In addition, researchers have
attempted to evaluate physical structures in a clarinet using
optical holography [4] and investigated instrumental perfor-
mance techniques [5, 6] as well as the timbre of instruments
such as bright, sweet, thick and transparent [7, 8].

Most of these studies have not addressed the identification
of reed quality. Our study focuses on the instrument physical
model and its acoustic signal with insight into the representa-
tion of clarinet tone quality.

3. HARMONICS BASED MODEL AND CLARINET
TONE EVALUATION METHOD

3.1. Harmonic Structure Features

Fig. 1: Clarinet plays (approximately) odd members of the
harmonic series only

An instrument can be formulated as an input-output sys-
tem model. For a clarinet, the single vibrating reed, pipe and
output signal are considered as the input, system and output
of the model, respectively. As shown in Fig.1, the clarinet is
modeled as a cylindrical pipe of length L opening at the far
end (i.e., bound-unbound boundary) but almost closed at the
other end (i.e., hard boundary) because the aperture between
reed and mouthpiece is tiny enough to cause a reflection al-
most like that from a completely closed end [14]. We dis-
tinguish the open end and closed end by coordinates x = L
and x = 0, respectively. The acoustic pressure at a point at
x ∈ [0, L] can be described by the ideal acoustic model in
Eq.1, which is the superposition of the bi-directional propa-
gation of waves in the pipe [15].

p(x, t) = (Ae−jkx +Bejkx)ejωt (1)

whereA andB are the amplitudes of the bi-directional waves,
ω = 2πf is the angular frequency, k = 2π

λ = ω
c is the an-

gular wave number, and c is the speed of sound in air. In
the acoustic model, the pressure node and pressure antinode
appear at the bound-unbound boundary and hard boundary,
accordingly (i.e., p(x = L) = 0 and p(x = 0) = pmax).

Consequently, only the standing waves with odd numbers of
quarter wavelength are allowed between the two boundaries,
and the frequencies can be expressed by:

fn =
(2n+ 1)c

4L
, n = 0, 1, 2, ... (2)

where fn is the frequency of the n-th standing wave. The
sound is described as acoustic pressure in physics, and is mea-
sured with an electrical transducer. The sampled signal s(n)
is defined as [16]:

s(n) ∝ p(x, t) (3)

Actually, the captured sound s(n) is a superposition of the
sound generated directly by the reed and the pipe:

s(n) = sreed(n) + spipe(n) (4)

It is demonstrated that the sound quality has a strong cor-
relation with harmonics [17, 18]. Here, we can rewrite the
signal x(n) into a Fourier series with a harmonic part and a
noise part. The signal produced by the reed and pipe can be
rewritten as follows:

sreed(n) =

M∑
m=0

βme
jω0mn + ν2(n) (5)

spipe(n) =

M∑
m=0

αme
jω0(2m+1)n + ν1(n) (6)

where m is the index of the harmonics, ω0 is the fundamental
angular frequency, αm and βm are constant coefficients, and
ν1(n) and ν2(n) are the random noise. As analyzed above,
the clarinet pipe produces only the odd harmonics.

By substituting Eq.5 and Eq.6 into Eq.4, we can obtain:

s(n) =

M∑
m=0

[γme
jω0(2m+1)n + βme

2jω0mn] + ν(n)

= sodd + seven + ν(n)

(7)

where ν(n) = ν1(n) + ν2(n), γm = αm + βm, the fun-
damental angular frequency ω0 = 2πf0 = πc

2L . We note
that the odd harmonics are the combination of signals coming
from both reed and pipe, whereas the even harmonics depend
on reed vibration only. We also observe in experiments that
the amplitudes of odd harmonics sodd are larger than those
of even harmonics seven in lower frequencies, which has also
been reported in [14]. Thus, we consider that the even har-
monics encode the characteristics of reeds and are more ef-
fective in evaluating their quality.

Furthermore, as experimentally analyzed and concluded
in [19, 20], the intervals, namely, unison, octave, perfect fifth
and perfect fourth are pleasing to listen and are called perfect
consonances. Since the first four harmonics constitute a per-
fect consonance with adjacent intervals of octave, perfect fifth
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and perfect fourth, their relative amplitudes in dB are strongly
related to the nuances of tone quality. Therefore, we extract
the following harmonics-based features for the clarinet tone
quality representation from the even parts of the first four har-
monics and an overall spectral shape described by harmonics:

HSF = {H2, H4, H1 −H2, H2 −H4,

H4 −Hi2k , Hi2k −Hi5k}

where HSF denotes the harmonic structure feature set, H1,
H2 and H4 are the amplitude of the first, second and fourth
harmonics, Hi2k , Hi5k are the harmonics nearest to 2kHz
and 5kHz, commensurately, and H1 − H2, H2 − H4, H4 −
Hi2k , Hi2k −Hi5k are the differences between two harmonic
amplitudes. From the analysis above, we considerH2 andH4

in this feature set as a result of reed vibration. The differences
between harmonics are inspired by a psycho-acoustic model
of voice quality and have effectively been applied to speaker
verification in [18]. In our case, H1 −H2, H2 −H4 contain
important information of sound quality: the spectral slope of
odd-to-even harmonic and even-to-even harmonic. The high
frequency components, H4 −Hi2k and Hi2k −Hi5k indicate
the spectral noise level and are negatively correlated with the
quality of sound. In general, a higher level of high frequency
noise leads to a lower level of tone quality.

3.2. Harmonic Energy Features

Energy is a measure of amount of sound produced by reed
vibration. Previous studies [4, 10] present that the distribu-
tion of energy and symmetry of reed in vibration accounts
for tone quality. The symmetry of reed in vibration results
in periodicity in signal, so we consider a representation as-
sociated with harmonics and noise, indicating periodic and
non-periodic parts separately. Thus the harmonic-to-noise ra-
tio (HNR) is calculated as follows:

HNR =

∑N−1
n=0 h

2(n)∑N−1
n=0 v

2(n)
(8)

where h(n) is the harmonic component, v(n) is the noise
component and the signal s(n) is a mixture of them s(n) =
h(n) + v(n). N is the number of samples in a spectral seg-
ment. In order to describe the energy distribution of harmon-
ics, we divided the spectrum into five parts, containing fun-
damental and harmonics in lower frequency. As we are more
interested in the lower frequency parts, we construct the fea-
ture as follows:

HEF = {HNR05, HNR15, HNR25, HNR35, RMSE}

whereHEF denotes the harmonic energy feature set,HNR05,
HNR15, HNR25, HNR35 are the harmonic-to-noise ra-
tios within the frequencies of 500Hz, 1500Hz, 2500Hz and
3500Hz. RMSE is the root mean square of total energy. A
better tone quality attributes to a higher HNR and a lower
overall energy.

3.3. Clarinet Tone Quality Classification

Fig. 2: Scheme of clarinet tone quality classification.

As shown in Fig.2, the scheme of clarinet tone quality
classification is composed of preprocessing, feature extrac-
tion and classification. Clarinet audio signals are sampled at
the rate of 96kHz and we intercept the steady state by remov-
ing the transient state segment and decay state segment. We
construct a df -dimensional feature vector, named harmonics-
based tone quality representation (HTQR), to represent clar-
inet audio signals, where the harmonic structure features
(HSF) and the harmonic energy features (HEF) introduced
above are adopted as key features. Other complementary
audio features are the frequencies and bandwidths of the
first four formants (Formants) and cepstral peak prominence
(CPP). Features in HTQR are achieved after a short time
Fourier transform performed using a sliding window of width
25ms and step size 10ms with Voice Sauce software [21]. The
SVM classifier using the radial basis function (RBF) kernel is
utilized to evaluate the performance of the features. Consid-
ering the dataset is not large, more complex classifiers may
outfit. In the work, we divide the tone quality into three levels
and implement the classifiers with one-versus-one strategy to
address the multi-class classification problem.

4. EXPERIMENTAL RESULTS

4.1. The Experimental Testbed
A clarinet tone dataset is created in a professional recording
room using professional equipment: a condenser microphone,
a voice channel microphone preamp and an audio interface.
Three professional clarinet performers from Xi’an Conserva-
tory of Music are invited for data collection. We utilize a
B[ clarinet and 80 reeds of three levels of quality: low level,
medium level and high level. For data collection, we choose
13 tones from the frequently used range (E3 to E6) cover-
ing the chalumeau, clarion and altissimo register of the B[
clarinet. For each tone, every reed is used to generate nine
3-second samples. In total, the dataset consists of 9 360 audio
samples and lasts around 7.8 hours. There are 2 340, 3 510
and 3 510 samples at the low, medium and high level of qual-
ity, correspondingly.

The data is randomly split into two parts: 75% for training
and 25% for testing. We obtain 20-dimensional HTQR fea-
ture vector (i.e., df = 20) for feature extraction. In the classi-
fication process, the kernel width of RBF is set to γ = 1

df
, and

penalty in the error term is considered with parameter C = 1
to improve the generalization ability.
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To study the dependency of classification results on dif-
ferent tones, we design the experiment with the following two
strategies: multi-notes strategy (MN) builds a single classifi-
cation model for the samples of all 3 different qualities and
13 different tones; single-note strategy (SN) builds multiple
classification models, each for the samples of the same tone.
Four single-note datasets are used in the experiment, namely
E3 (165Hz), E4 (330Hz), E5 (659Hz), and E6 (1319Hz).

4.2. Ablation Study for HTQR
In this experiment, we examine how variation in the proposed
feature set affects tone quality evaluation and show the ef-
fectiveness of HTQR for different tones. We test five kinds
of representation in the ablation study, where HTQR is the
complete data set, HTQR \ HSF corresponds to the features
generated by removing HSF from HTQR, and the other cases
are presented in a similar manner. The performance was eval-
uated by F1-score and accuracy metrics as appropriate.

Table 1 reports the results of ablation study for the five
cases. HTQR including our proposed HSF, HEF and the other
complementary features introduced in section 3.3 achieves
the best performance in tone quality evaluation. We also
observe that HTQR \ HSF obtains the lowest value in all
the cases and HTQR \ HEF also largely contributes, which
demonstrates that harmonic structure and energy distribution
play a crucial role. In addition, formants indicate the first
four harmonics whose intervals are consonant and CPP is an
important feature in defect detection.

Table 1: The comparison results in ablation study.

Features F1-score Accuracy
HTQR 0.85 0.84

HTQR \ HSF 0.77 0.78
HTQR \ HEF 0.79 0.79

HTQR \ Formants 0.81 0.80
HTQR \ CPP 0.84 0.85

4.3. Classification Performance Evaluation on the Multi-
notes and Single-note dataset
In this subsection, we test the performance of HTQR for
the tone quality evaluation and compare it with the widely
used Mel Frequency Cepstral Coefficients (MFCC) (20-
dimensional) [11, 22]. We implement the experiments with
two strategies introduced in section 4.1: MS and SN. Table
2 compares the results of HQTR and MFCC with two dif-
ferent strategies. We first observe that HTQR achieves the
satisfactory performance, i.e., 0.84 and 0.92 in accuracy, with
both strategies. Additionally, SN outperforms MN since it
results in a lower within-class variance than the latter. Turn-
ing to Fig.3, it provides a more detailed result for the quality
evaluation of each tone in the SN strategy. It depicts that
the low-frequency tones, such as E3, E4 and E5 reported

significantly a higher F1-score than the high-frequency tones.
This decline in high frequency appears as well using MFCC.
A challenge for both features is to improve performance in
high frequency, because the high-frequency tones are sparse
in spectrum, that is, carrying less information and easier to be
disturbed by high-frequency noises. Table 2 also illustrates
that the proposed HTQR outstrips the MFCC features with an
absolute improvement of 14% to 20%.

Table 2: The compared results of HTQR and MFCC with
two strategies.

Feature set Level MN SN(E3)
F1 ACC F1 ACC

HTQR
good 0.85

0.84
0.92

0.92medium 0.83 0.91
bad 0.86 0.95

MFCC
good 0.66

0.64
0.78

0.78medium 0.60 0.75
bad 0.64 0.81
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Fig. 3: Performance of HTQR with single-note strategy.

5. CONCLUSIONS

In this paper, an effective representation called HTQR is pro-
posed for identification of clarinet reed quality by tone quality
evaluation. It is discovered that the quality of reed could be
decoupled from that of pipe based on the harmonics of the
audio signal. The pipe mainly produces odd harmonics, and
the even harmonics encode the tone characteristics of reeds.
Then based on the reed vibration mode, the harmonic energy
with respect to noise is highly relevant to tone quality. Ac-
cordingly, we extract harmonic structure features (HSF) and
harmonic energy features (HEF). A feature set HTQR is even-
tually constructed by combining HSF, HEF and the other 2
widely used features in audio analysis as supplementary. Test-
ing results based on the dataset demonstrate that HSF play a
pivotal role in the tone quality representation of reed. We con-
clude that HTQR significantly improves clarinet tone quality
identification with the accuracy of 84% and 92% by MN and
SN strategy, respectively. Our next step is to classify the tone
quality of performers with the minimum effect of instrument
quality.
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